Prediction of Power Generation of a Photovoltaic Power Plant Based on Neural Networks

نویسندگان

چکیده

Photovoltaic energy production is an important factor for increasing the electricity supply. The ability to predict electric power (EPP) of a photovoltaic (PV) farm supports from management process grid trade in market and much more. Also, by predicting PV (PVP), it possible monitor lifetime solar cells that form backbone any system. As critical result, sudden failures plant can be avoided. Using long short-term memory recurrent neural network (LSTM-RNN) model, this work evaluates prediction accuracy two forecasting strategies: recursive strategy non-recursive Multiple-Input Multiple-Output, respectively. dataset consists 5-years in-filed data measurements collected CETATEA plant, research site facility renewable energies located Cluj-Napoca, Romania. high granularity values recorded each 1 hour guarantees overall impact size, number previous observations, forecast horizon on evaluated strategy. performance metrics used evaluate are root mean square error, bias average error. results analysis demonstrates implemented machine learning models production, as well their importance loss process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks

The power prediction for photovoltaic (PV) power plants has significant importance for their grid connection. Due to PV power’s periodicity and non-stationary characteristics, traditional power prediction methods based on linear or time series models are no longer applicable. This paper presents a method combining the advantages of the wavelet decomposition (WD) and artificial neural network (A...

متن کامل

Prediction in Photovoltaic Power by Neural Networks

The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operato...

متن کامل

Performance Modeling of Power Generation System of a Thermal Plant

The present paper discusses the development of a performance model of power generation system of a thermal plant for performance evaluation using Markov technique and probabilistic approach. The study covers two areas: development of a predictive model and evaluation of performance with the help of developed model. The present system of thermal plant under study consists of four subsystems with...

متن کامل

Photovoltaic power plant power output prediction using fuzzy rules

Photovoltaic Power Plants (PVPP) are classified as a power energy sources with non-stabile supply of electric energy. It is necessary to back up power energy from PVPP for stabile electric network operation. We can set an optimal value of back up power energy with using variety of prediction models and methods for PVPP Power output prediction. Fuzzy classifiers and fuzzy rules can be informally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3249484